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Abstract—In nowadays society, the amount of applications that
require cryptographic support keeps growing. The functionality
and security of these applications rely on the capability of
cryptographic accelerators in providing both adequate perfor-
mance metrics while maintaining flexibility. In this paper a
programmable cryptographic processor prototype, supporting
AES and EC (Elliptic Curve) ciphering is presented. This
processor consists of up to 12 programmable processing units.
We explore and present results for the dynamic reconfiguration
of these processing units, allowing the runtime replacement of
AES by EC units (or vice-versa) according to the application
needs. Combining programmability and runtime reconfiguration,
both flexibility and performance can be improved. Moreover, the
reconfiguration capability allows to further reduce the required
hardware area, since these functionalities are multiplexed in time.
The presented prototype is supported by a Xilinx XC4VSX35
FPGA, consisting of 6 static EC units and 6 reconfigurable
AES/EC units, running simultaneously. This processor is able
to cipher an 128 bit AES block in 22.9 µs and perform an
EC point multiplication in 2.02 ms. The full reconfiguration
of a processing unit can be achieved in less time than an EC
multiplication.

I. INTRODUCTION

Currently, most applications require security and authen-

tication services. Several protocols have been designed to

provide such requirements to these applications, being used

in a variety of devices: from smart cards, wireless sensors,

cell phones, and laptops, that usually need a small amount

of connections, to high-end servers that have to establish

thousands of connections. For such a wide variety of devices,

there is also a wide range of different demands. The following

highlights the key features that have to be considered:

• performance, supporting high-throughput and low la-

tency;

• low cost, using cheap platforms and massive production

computing elements;

• compactness, allowing the coexistence of different appli-

cations in a small pool of resources;

• flexibility, allowing adjustment to different needs;

• low power, enhancing the battery savings, reducing the

costs in energy and heat sinks, and increasing autonomy.

The security and authentication protocols are often sup-

ported by two main types of cryptographic functions: symmet-

ric and asymmetric. The latter allows to establish a secure and

confidential communication between two entities that share

a secret, while the former allows two entities to create a

distributed secret without any previous agreed information.

Several algorithms have been proposed to implement these

cryptographic functions, and the most successful ones have

been adopted regarding their strength against attacks, and their

compatibility with the performance-and-compact demand [1],

[2].

Regarding the asymmetric algorithms, the Elliptic Curve

(EC) cryptosystem has emerged as a reliable and effective

alternative for the widely used Rivest-Shamir-Adleman (RSA)

algorithm. The EC cryptosystems have the advantage of pro-

viding a greater security per bit of the secret key. Therefore,

smaller keys need to be used/stored. Consequently, more

compact and bandwidth efficient, since smaller keys need to

be transmitted, cryptosystems can be developed.

Although symmetric algorithms do not offer the same

properties as asymmetric ones in terms of the secret key con-

struction, they are simpler, more compact, and more efficiently

computed, allowing for better area and throughput metrics.

Thus, its usage is mandatory for some applications. Currently,

one of the most widely used algorithms for symmetric cryp-

tography is the Advanced Encryption Standard (AES) [2].

Although both symmetric and asymmetric algorithms have

shown to provide good performance metrics, their complex-

ity is still considerable. To overcome this problem, hard-

ware accelerators are employed. Several accelerators have

been proposed supported on Application Specific Integrated

Circuit (ASIC) solutions [3], Field Programmable Gate Array

(FPGA) [4], Graphical Processing Unit (GPU) [5], [6], and In-

struction Set Architecture (ISA) extensions for general purpose

processors [7]. While the flexibility of the solutions increase

when we move from the ASIC to the general purpose solu-

tions, the performance decreases. The ASIC approach allows

for fast and low power solutions, but with limited adaptability

and higher design costs. General purpose processors solutions

allow for optimal programmability, but achieve relatively low

performances and higher power costs. The GPU solutions

allow for the utilization of a large amount of parallel hard-

ware structures with a reduced cost, because of the massive

production due to the gaming market. However, the GPU’s

datapath is not optimized for cryptographic procedures and

the parallelism extraction for cryptography is limited, allied

with the significant power consumption. The FPGA solutions

are a compromise between the high performance/low power of

the ASIC and the flexibility/low cost of the general purpose



processors. Moreover, FPGAs allow to combine programmable

solutions with reconfiguration capabilities, providing adaptable

datapaths. FPGAs can be considered as an advised option to

efficiently support a wider range of cryptographic algorithms

and procedures.

This paper proposes a general cryptographic processor

supported on FPGA. This programmable processor was de-

signed to take advantage of the reconfigurable capabilities

of an FPGA for achieving good performance metrics and

enhanced flexibility. The processor proposed in this work

aims to provide support for the majority of the security and

authentication protocols, introducing microcoded AES and EC

cores, and a true Random Number Generator (RNG) supported

on oscillator rings to generate secrets. Very few attempts

have been made in the related art to combine AES and EC

arithmetic into a single arithmetic body. The efficiency of such

approaches is compromised by the difference in the size of

the datapath (m ≥ 163 for the EC versus m = 8 for the

AES), requiring the use of different irreducible polynomials,

thus different reduction structures. Our approach is different:

instead of sharing the datapath for the AES and EC arithmetic,

we create individual, compact and high-performance AES and

EC cores that share the same microcoded control unit. With

this approach and using the reconfiguration capabilities of the

FPGA, it becomes very easy and efficient to dynamically trade

AES and EC cores, depending on the requirements. A compact

and flexible cryptographic processor with good performance

metrics is obtained. With a RNG associated to the processing

units the secret keys of the protocols can be locally computed

and directly stored in the processing units’ memory. Avoiding

the communication of secret keys makes the system more

secure and resistant to external attacks.

The paper is organized as follows. In Section II we provide a

brief introduction on the AES and EC arithmetic. In Section III

we present the details of the reconfigurable architecture used.

In Section IV we describe the system layout in order to

handle the runtime configuration of processing units. Section

V presents results for the developed prototype, and Section VI

draw some conclusions about the developed work.

II. AES AND EC CRYPTOGRAPHY

In this section we briefly introduce the arithmetic that the

proposed processor supports.

A. AES arithmetic

The AES algorithm is composed by three main operations:

the key expansion, the ciphering, and the deciphering. In the

key expansion operation, the used key, with 16, 24 or 32

bytes, is expanded in order to obtain 176, 208, or 240 bytes,

depending on the initial size. This expanded key is divided

in sets of 16 bytes and each set is used in each round of

the ciphering/deciphering operation. The number of rounds

depends on the used key size. The key and data used in the

ciphering/deciphering rounds are organized in a common way:

in a 4×4 bytes matrix. Each AES round affects each of these

matrices’ elements using the following elementary operations:

• byte additions over GF (28), which correspond to a 8-bit

bitwise exclusive OR (XOR) operation;

• non-linear function S(.) often called an SBox and its

inverse; this function can be computed with multiplica-

tions and inversions over GF (28) with the irreducible

polynomial I(x) = x8 + x4 + x3 + x + 1;

• data matrix multiplication with constant matrices, with

the irreducible polynomial I(x);
• matrix row rotating shift operation.

Further details about these operations and how they are applied

can be found in [2].

B. EC arithmetic

An EC over GF (2m) is a set composed by a point at infinity

O and the points Pi = (xi, yi) ∈ GF (2m) × GF (2m) that

comply the following equation:

y2

i + xiyi = x3

i + ax2

i + b, a, b ∈ GF (2m). (1)

By establishing the addition operation over the EC points and

by applying it recursively, it is possible to obtain the multipli-

cation by a scalar operation. It is known to be computationally

hard to invert this operation, since it is difficult to determine,

from the recursive addition result of an EC point, how many

times this point was added. This is known as the Elliptic

Curve Discrete Logarithm Problem (ECDLP), which supports

the security of EC cryptosystems.

The EC point addition and doubling (addition to itself) are

performed with operations over the underlying field GF (2m)
applied to the points’ coordinates. These GF (2m) operations

are the addition, multiplication, squaring and the inversion,

modulo an irreducible polynomial with degree m. Details

about how these operations can be efficiently performed can

be found in [8].

III. CRYPTOGRAPHIC PROCESSOR ARCHITECTURE AND

DETAILS

In this work we developed a prototype of a cryptographic

accelerator supported on reconfigurable hardware, namely a

prototyping board powered by a Xilinx Virtex 4 FPGA [9]. In

this prototype the aim is to support the majority of protocols

that need asymmetric and symmetric cryptographic schemes,

and also the secure generation of secret keys for these proto-

cols. A schematic overview of the proposed processor organi-

zation is presented in Figure 1. The processor is composed by

several processing units (PUs), responsible for computing the

cryptographic procedures. An RNG is also included in order

to generate the secret data (such as the private keys). The

processor has an I/O interface to communicate and receive

the data (public keys, plain texts, ciphered texts) to/from the

main controller, which we herein call host of the processor.

This interface is also used to provide commands, such as

start commands for the processing units (PUs) or write/read

commands of data and instructions. Through this interface the

host can query the processor for, e.g., availability of PUs or

check if the required tasks were already done. When the host

sends a write command to any PUs, it also defines the origin



of the data to be written, namely external data or internal

data read from the RNG. Thus, the host can use the secret

information without having to touch or to know it.

All the PUs are responsible to run according to the mi-

crocode stored in a centralized instruction memory. For this,

each PU has its own microprogram counter (µPC) and startup

addresses to run and control the flow of the correct program.

An arbiter controls the access to the instructions memory

according to a priority policy, and signals any PU when the

memory retrieves a valid microinstruction for it.

Each PU contains its local data memory, which is addressed

according to the received microinstructions. Input data and

temporary data, as well as the final results are stored in this

local memory. This memory can be accessed by the host, when

the PU is set to the idle state through specific microinstructions

directly provided by the host, in order to be possible to read

and write data from/to the PUs. The width of the data memory

as well as the details of the arithmetic units available is

customizable according to the type of the PU. Different types

of PUs support different cryptographic procedures.

With this modular architecture, the PUs share the same

control through the instruction memory while facilitating the

replacement of a given PU by another one. This allows to

extract full advantage of the reconfiguration capabilities of the

electronic devices.

A. PU for AES

The architecture of the AES PU is presented in Figure 2a.

This architecture is composed by a data RAM of 512 positions,

a ROM and two adders. The ROM implements a look up table

for the non-linear function S(.) and its inverse S−1(.) (see

Section II-A). We also include in this ROM the operations

2S(x), 3S(x), 9x, 11x, 13x, and 14x, where x represents the

ROM address. With these operations, we are able to perform

the multiplications with the constants matrices operations.

Since the computation of the AES is performed over

GF (28) the used datapath and memory width is of 8 bits. Re-

garding that x has 8 bits, the ROM has 2048 entries of 8 bits.

This amount of data fits a single BRAM present in the Xilinx

Virtex 4 technology. Furthermore, since these BRAMs are dual
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Fig. 2: Architecture of the processing units.

port, the same ROM can be used for two PUs. The two adders

at the input and output of the ROM perform the required

additions for the AES arithmetic. With this architecture the

following basic operations are implemented, where L(.) is a

look-up result: R(c) = R(a)+R(b), R(c) = R(a)+L(R(b)),
R(c) = L(R(a) + R(b)), and R(c) = L(R(b)), where a,

b, and c are the addresses provided by the microinstruction.

An operation to load a constant directly to the memory is

also implemented. The byte shift operations can be overcome

with the appropriate addressing of data, since each address

correspond to one byte. Regarding the flow control of the

program, three jump related operations are implemented:

• jmpset: set the value of an indexing counter;

• jmpinc: jump if the value associated to this jump

instruction match the value in the indexing counter; the

indexing counter is incremented;

• jmpdec: similar to jmpinc, but decrements the index-

ing counter;

• end: determines the end of the program, and thus the PU

becomes idle.

It is also possible to sum the value in the indexing counter

multiplied by 16 to the data addresses. This allows to easily

browse through the 16 byte matrices where the AES data

is organized in the data BRAM depending on the indexing

counter. All these functionalities, including the choice of the

ROM look-up and the usage of the indexing counter data in

the addresses, are mapped in microinstructions of 36 bit width.

Each microinstruction run in 3 clock cycles: one cycle to read

the data, one cycle to read the ROM, and another cycle to

write the result.

B. PU for EC

We support the EC PU in our previous work presented in [8]

for polynomial basis field arithmetic. The architecture of this

compact and flexible PU is similar to the one of the AES

PU, and is depicted in Figure 2b. There is also a data BRAM

where the field elements (of size m ≥ 163) are split and

stored in 21 bit words. The arithmetic logic supports two-



word with two-word operand additions and Karatsuba-Offman

multiplications.

The microcode adopted for the EC PU can be classified

into two main microinstruction types. The complex microin-

structions (type I) are performed over field elements, while

the lower complexity microinstructions (type II) operate over

words. There is a type I reserved microinstruction that corre-

sponds to a customizable sequence of type II operations.

Type I instructions are used to access the memory (read

and write) and the key register (key) to compute the m bit

add, squaring and reduction operations (add, sqr and red),

and to control the flow by conditionally jumping to a microin-

struction address depending on the key register or by turning

the Processing Unit (PU) to an idle state (jmp and end).

The type II instructions allow for adding and multiplying 2-

word operands (eadd and emult). An instruction determines

the end of a type II sequence (eret) and, consequently,

the end of the pers type I instruction. A customizable

instruction (pers) is also reserved, corresponding to a user-

defined sequence of type II instructions.

Another jump instruction is also introduced. When a PU is

placed in the architecture, an ID is assigned to it. This jump in-

struction, called jumpid, is an unconditional jump operation,

and is only executed if the ID in the microinstruction match the

ID assigned to the PU. If the IDs do not match, this instruction

is ignored. Introducing this instruction allows a program to use

microcode segments of other programs, since this instruction

works as a return instruction that is only considered by a

PU running a specific program. This is useful to shrink the

program sizes by running a single routine needed in different

programs, e.g. the inversion in the scalar multiplication and in

the point addition. This unit also supports an instruction that

signals the end of the program.

The functionality provided by the EC PU can be controlled

by microinstructions of 32 bit width. Since the AES core need

36 bit width instructions, the EC PU also uses 36 bit coded

instructions, by ignoring the 4 most significant bits. Regarding

the clock cycles required for the instructions, the jump and

word size addition needs 3 cycles, the word size multiplication

needs 5 cycles, the field size addition needs 13 cycles, and the

reduction and squaring operations need 14 clock cycles.

C. Arbiter

The arbiter controls the access to the microinstruction

memory when there are simultaneous and pending requests.

The arbiter considers a static priority for each PU, where

all the EC PUs have higher priority than the AES PUs.

This is because the EC programs possess microinstructions

that take a larger amount of clock cycles comparing with

the AES microinstructions. Thus, it is more likely the AES

microinstructions to efficiently fill the clock cycles between the

EC requests, than the opposite, resulting in a better efficiency

of the whole system.

D. True Random Number Generator

A true RNG is also included to generate the secrets that

lead to the private keys. Hence, since the private keys are not

reset clock

random bit

Fig. 3: Random bits generator.

communicated by the device, there is no entity, other than

the host, external to the device capable of achieving them,

at least without implementing sophisticated attacks, such as

Differential Power Attacks [10].

The randomness source of the RNG is the jitter of an

oscillator. In a digital device, such as an FPGA, these os-

cillators can be obtained with combinatorial rings of an odd

number of logical inverters. To obtain a random bitstream,

we can implement several of these oscillators, obtain the

logic exclusive OR for all the outputs of each oscillator, and

sample the obtained signal with a frequency lower than the

frequency of the oscillators [11]. An FPGA implementation

of such RNG was reported in [12] for an Altera Cyclone

II FPGA. The authors in [12] suggest an improvement to

the method presented in [11]. They suggest to sample the

output of each oscillator prior the exclusive-OR operation. This

suggestion is based on the observation that the combinatorial

logic responsible for computing the exclusive-OR operation

may not have enough commutation speed between events at

the inputs. For the RNG designed in this paper we followed

this suggestion, which resulted in the circuit presented in

Figure 3. We also introduced a reset signal in order to halt

the oscillators and the random bitstream generation, in order

to reduce the power consumption when the RNG is not being

used. A shift register was padded to the output of the RNG to

store the random data and allow it to be readily read.

IV. RUNTIME RECONFIGURATION

The proposed processor is specially designed to efficiently

support runtime reconfiguration. The modularity of the pro-

cessor allows to easily configure different processing units

without affecting the behavior of the others. This allows

to fulfill the runtime needs of the host by better adapting

the computation to the protocols being used. Our design is

supported by a Xilinx Virtex 4 FPGA, allowing for the Xilinx

dynamic reconfiguration flow for this processor.

The only concern regarding the control of the dynamic

reconfiguration is related with the dummy requests placed

in the arbiter by the PU under reconfiguration, due to the

unexpected behavior of the PUs outputs during reconfigu-

ration. To overcome this issue, the architecture contains an

enable register that can be accessed by the host. When the

host disables the PU that is going to be reconfigured, the

valid requests of that PU are ignored by the arbiter. After the



reconfiguration, when the host enables the PU, a reset pulse

is generated for that PU to set it to the idle state.

In order to support both AES and EC processing units,

the reconfigurable zones should cover the resources required

by the most demanding implementation loaded in that zone.

Between the two considered PUs, the most demanding in terms

of resources is the EC PU, due to the wider datapath (21-bit

instead of 8-bit) and larger complexity. For these reasons, the

reconfigurable zones are sized to fit an EC PU.

Since the several PUs compete to access the instruction

memory, conflicts can exist, thus some PUs may stall waiting

for their request to be fulfilled. These conflicts penalty will

increase if the number of PUs appended to one of the instruc-

tions memory port increases. This effect has to be taken into

account when setting the number of PUs in the design and,

consequently, the number of reconfigurable zones. Each of

the AES operations requires 3 clock cycles to perform, while

an EC operation requires from 3 to 14 cycles to perform.

This means that the average of clock cycles per instruction

in the AES PUs is less than the EC PUs average. Thus, the

AES PUs will generate more conflicts than the EC PUs. Since

the arbiter can issue one instruction per clock cycle, only a

maximum of 3 AES PUs can ideally operate at the same time

without conflicts. Putting a forth PU with less priority than the

others will cause this fourth PU to stall until one of the others

finishes the ongoing computation. This observation determines

the number of the required reconfigurable zones, which is 3

per instruction memory port. Thus, the system can have up

to 3 AES PUs per instruction memory port, implemented in

the reconfigurable zones. The system can have more static

EC PUs according to the conflicts that the user admits or to

the available resources. Considering a dual port instructions

memory, the number of reconfigurable zones can be increased

to the double, 6.

The use of dual port memories also contributes to reduce the

resources used in the design of the AES PUs. Considering a

dual-port look-up ROM the same memory can be implemented

statically outside the PUs and shared by two AES PUs, as

Figure 4 suggests. Moreover, this procedure allows for the

information inside the RAM not to reside among the config-

uration data, enhancing the compactness of the bitstream and

the configuration speed. Another issue that as to be considered

while reconfiguring the PUs is the amount of signals that

cross the reconfigurable zone boundary, since the path of these

signals through the boundary has to be directly instantiated.

This instantiation, except for the clock signal when provided

by a global buffer, is performed recurring to directional slice

bus macros. These bus macros are provided with the Xilinx

ISE tools that support dynamic reconfiguration. The number

and type of the required macros is determined by the number

of PU inputs and outputs signals. Each bus macro occupies

a Configurable Logic Block (CLB), which correspond do 4

slices, and supports up to 8-bit signals. To determine the

number of bus macros, the maximum number of inputs and

maximum number of outputs in both the PUs types (AES

and EC) have to be considered. For the proposed design a
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maximum of 89 input signals (⌈89/8⌉ = 12 bus macros) and

64 output signals (⌈64/8⌉ = 8) is required, corresponding to

a total of 20 bus macros.

V. EXPERIMENTAL RESULTS AND RELATED WORK

The proposed design was successfully implemented and

experimentally tested on a prototyping board powered by

a Xilinx XC4VSX35-10 FPGA [9]. We implemented and

evaluated different combinations in the number of AES and

EC cores. These implementations refer to EC arithmetic

over GF (2163) and AES arithmetic with 128 bit key size.

The FPGA programming files were obtained from a VHDL

description of the hardware, synthesized with the Synplify

Premier C-2009.06 tools and Placed&Routed with the ISE

9.2.04i PR14 tools. The Virtex 4 technology supports the

handling of dynamic reconfiguration using the Internal Config-

uration Access Port (ICAP). The advantage of using this port

is the possibility to direct instantiate and conjugate it with the

remaining design, including the communication logic, that can

write the reconfiguration bitstream directly to this port.

The Virtex 4 FPGA contain block RAMs that provide

true dual port capabilities. This allows for all the memories

employed in the design (instruction, data, and look-up) to be

dual port, saving resources. As discussed in Section IV, the

maximum number of AES PUs competing for an instruction

memory port can be up to 3. Thus, we will use 6 reconfigurable

zones that can be reconfigured with an EC or AES PU. We

also implement another 6 (3 per instruction BRAM port) static

EC PUs. Thus the design can have up to 12 PUs working

simultaneously, and up to 6 PUs can be AES PUs. The reason

for implementing only 6 static PUs is related with the Slice

resources constraint and with the increasing number of con-

flicts while accessing the instruction BRAM. We considered

an instruction memory with 1024 36-bit instructions to contain

all the routines for EC and AES arithmetic.

The static design contains the required logic to implement

the communication with the host, the random numbers genera-

tion, the AES look-up memories, and the 6 static EC PUs. The

required resources to implement the static design are 8,446

slices and 11 BRAMs (2 for the instruction memory, 3 for the

AES look-up ROMs, and 6 for the data storage in the 6 static

EC PUs).
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There are 6 reconfigurable zones in the design with rectan-

gular shape of 13 CLB width and 21 CLB height (13× 21×
4 = 1092 total slices). Considering the size of the Virtex 4

configuration frames which have 1 CLB width and 16 CLB

height, the reconfiguration of a reconfigurable area requires

the communication of 26 frames. The different reconfigurable

zones do not intercept reconfiguration frames of the others.

For this, the bottom boundaries of the reconfigurable zones

are at the CLB coordinates 0, 32, and 64 (slices 0, 64, and

128). The layout of the system, as well as the bus macros

location, is depicted in Figure 5 for different contents of the

reconfigurable zones after place and routing. Each PU employs

1 BRAM for its data memory. The reconfigurable AES PUs

requires 157±2 slices and the EC PU requires 943±7 slices.

The variation in the slices resources employed by each PU is

due to the slightly different placing of the resources by the

tools for the different reconfiguration zones. The occupation

of the reconfigurable zones by the PUs is 14% and 86% for

the AES and EC PUs, respectively. Although the occupation

of the reconfigurable zones is not complete, the margin of

free resources allow to enhance the routing delays. Regarding

the complete design, the required resources are 14,092 slices

(92% of the total resources) with all the reconfigurable zones

implementing EC PUs and 9,387 (61% of the total resources)

with all the reconfigurable zones implementing AES PUs.

Considering the reconfigurable zones completely occupied, the

required resources for the complete design are 14,998 slices

(98% of the complete resources). The obtained system can run

at the maximum frequency of 100.3 MHz.

The reconfiguration bitstreams were generated in com-

pressed format, using the appropriate Xilinx tools options.

The maximum and minimum size in 32-bit words of the

runtime reconfiguration bitstreams are 30662 and 31067 for

EC PUs, and 27898 and 29500 for the AES PUs. Although the

reconfiguration area is the same for the AES and EC PUs, the

AES PUs result in approximately 5% smaller bitsreams due to

the lower utilization of resources, allowing for a slightly higher

compression. The reconfiguration time is directly correlated

with the bitstreams and the clock frequency. The ICAP in

Virtex 4 technologies allow to write a 32-bit reconfiguration

word in each clock cycle. The maximum ICAP working

frequency is 100 MHz [13], thus we expect that the maximum

reconfiguration time can be of 31067/100 MHz ≈ 310µs.

Although, in the developed prototype, the reconfiguration

bitstream is communicated from outside the device and written

directly in the ICAP, being the reconfiguration time limited by

the communication process. The communication is performed

through a PCI bus, working at 33 MHz. Hence, we use the

same bus frequency driving the ICAP, being the incoming data

immediately transferred to the ICAP. With this, we obtain a

maximum reconfiguration time of 31067/33 MHz ≈ 941µs.

In the next subsection we present the results specific for the

RNG and PUs operation.

A. Random Number Generator

In order to validate the implementation of the RNGs,

random bitstreams were collected from the processor and their

randomness tested using a battery of tests. Two main batteries

of tests are used for this purpose: the National Institute of

Standards and Technology (NIST) test [14] and the Diehard

one [15]. For the implementation proposed in [12], in order to

pass both batteries of tests successfully, the authors obtained

a RNG with 25 oscillators of 3 inverters each, sampled at



100 MHz. The option of using 3 inverters is justified by the

enhanced compactness of the implementation.

The randomness of the bitstream is enhanced if the number

of oscillators increase or/and the sampling frequency decrease.

For the processor herein presented, using 3 inverters per oscil-

lator, the number of required oscillators to pass both NIST and

Diehard tests at 100 MHz, which is the operating frequency

for the prototype, was shown to be 20. Each oscillator is

implemented within a CLB, resulting in a very compact RNG.

B. Processing Units

Using the proposed architecture and microcode format, we

were able to program the EC scalar multiplication and point

addition in 401 instructions, and the AES key expansion,

ciphering and deciphering in 253 instructions. The total latency

for the EC PUs is 201,661 clock cycles for the EC scalar

multiplication and 4,796 clock cycles for the point addition.

The latency for the key expansion and ciphering/deciphering

in our AES PU is 610 clock cycles and 2,290 clock cycles,

respectively.

Performance metrics for different combinations of simulta-

neously working PUs in the cryptographic processor are pre-

sented in Table I. This metrics are measured at the prototype

operating frequency, 100 MHz.

The evaluation in Table I use 1 EC scalar multiplication

and 88 consecutive AES ciphering operations, because the

time consumption of one individual EC point multiplication

is approximately the time of 88 AES operations, allowing a

fair analysis. Although the instruction memory has two ports,

we focus our analysis on a single arbiter individually, thus one

of the instruction memory ports. This analysis hold for both

arbiters, even if the configuration of the PUs attached to them

is different.

An EC point multiplication produces a result in 2.02 ms

if no conflicts occur, thus the proposed design provides a

throughput of 496 Op/s for only one PU. For 6 EC PUs

running simultaneously, the throughput is of 1,536 Op/s, which

is lower than 6 times the throughput for one PU, due to

the conflicts accessing the instructions. Performing the same

analysis for the AES arithmetic, considering the ciphering of

128 bit blocks, the proposed processor provides a throughput

from 5.6 Mbit/s for 1 PU to 16.8 Mbit/s for the 3 PUs. In

this case, the throughput of the system scales directly with

the number of PUs, since all the instructions for the 3 the

AES PUs competing for the instruction memory take the

same 3 clock cycles, thus no conflicts will occur. Intermediary

configurations can be useful for the dynamic requirements of

the host.

We also introduce an efficiency metric in Table I. This

efficiency measures the impact of the request conflicts solved

by the instruction memory arbiter. This efficiency measures the

ratio of time used for useful computing by all the operating

PUs within a specific time interval. To perform this efficiency

measurement we programmed all the PUs to run consecutively

the same program, and after a specific time interval T mea-

sured in clock cycles the number of complete EC (nEC) and

AES (nAES) operations were counted. The efficiency (E) is

given by:

E =
nECTEC + nAESTAES

nPUT
; (2)

where TEC and TAES is the time of a single EC and AES

operation without conflicts in the memory accessed measured

in clock cycles, respectively, and nPU is the number of the

active PUs. From Table I, it can be observed that the efficiency

is very close to 100% for configurations with less than 4 PUs.

This result arose from the fact that an instruction takes at

least 3 clock cycles to complete, thus the number of conflicts

in the arbiter will be meaningless. Moreover, for the other

configurations the efficiency is always greater than 61%.

Comparing the presented results with the related work is

not straightforward, since different technologies and different

metrics are used by different authors. Nonetheless, we intro-

duce some related art results to comparatively evaluate our

design.

In [4] a compact AES/EC design is proposed, supported on

a Xilinx Virtex XCV800 platform running at 41 MHz. Several

Logical Units (LUs) that support the basic field operations over

GF (28) are organized by two reconfigurable modes: a Single-

Instruction-Multiple-Data (SIMD) mode that support the AES

arithmetic, and a Single-Instruction-Single-Data (SISD) mode

that supports the EC arithmetic. This design does not support

simultaneous EC and AES arithmetic, since the LUs must

be reconfigured to reuse resources. This design offers a

throughput of 3.8 Mbit/s for the AES ciphering (128 bit key),

and a Point multiplication (in GF (2163)) latency of 5.36 ms.

Our AES throughput when using one PU is 5.5 Mbit/s (1.4

times higher) and the latency for the EC point multiplication

is 2.02 ms (2.65 times lower). The design in [4] occupies

220K gates (approx. 2329 Slices), which is 2.1 times more

than one reconfigurable zone in our design. In [4], the sharing

of the datapath between the AES and EC results in the splitting

of an operation in smaller ones, when these operations could

be more efficiently computed in dedicated hardware or using

look-up tables. This could justify the lower performance metric

of this design.

In [3] a 0.18µm ASIC solution operating at 100 MHz is

proposed. In this solution the AES and EC arithmetic share

most the multipliers and registers. With 56K gates, the authors

in [3] state that a throughput of 64 Mbit/s for the AES, and

a latency of 1.8 µs for a field multiplication can be achieved.

Considering that 983 field multiplications and 650 squaring

operations are required for implementing the EC multiplication

algorithm, we estimate that the EC point multiplication latency

would be >2,9 ms. The herein proposed design is able to

perform the EC point multiplication 1.4 times faster. Although

our AES throughput is lower, our design can operate AES and

EC simultaneously and offer a flexibility and programmability

that an ASIC solution can not.

In [16], a compact solution for AES supported by a Xilinx

XC2S15 FPGA running at 67 MHz is proposed. This design is

supported by two main arithmetic units: a multiply accumulate,

and a byte substitution unit, to support the non-linear function



TABLE I: Performance metrics for different combinations of simultaneously working PUs.
# ECC # AES Latency ECC throughput AES throughput Efficiency

PUs PUs (K clk cycles) ms (Op/s) (Mbit/s) (%)

0 0 - - - - -

1 0 201.7 2.02 496 - 100.00

2 0 201.7 2.02 992 - 100.00

3 0 201.7 2.02 1488 - 100.00

4 0 342.3 3.42 1169 - 82.50

5 0 344.9 3.45 1450 - 71.60

6 0 390.5 3.91 1536 - 61.67

0 1 201.5 2.02 - 5.59 99.98

1 1 206.9 2.07 483 5.44 99.08

2 1 223.5 2.24 895 5.04 96.61

3 1 348.8 3.49 860 3.23 81.80

4 1 354.5 3.55 1128 3.18 71.24

5 1 391.4 3.91 1278 2.88 61.59

0 2 201.5 2.02 - 11.18 99.98

1 2 208.1 2.08 481 10.83 98.57

2 2 348.7 3.49 574 6.46 79.27

3 2 350.3 3.50 856 6.43 70.72

4 2 385.9 3.86 1037 5.84 61.20

0 3 201.5 2.02 - 16.77 99.98

required in the AES. These units are controlled by microin-

structions and a microprogram counter controls the program

flow and branches. This design achieves a throughput of 2.2

Mbit/s occupying 124 slices and 2 BRAMs. Our AES PU

offers a throughput 2.5 times higher with 1092 slices allocated

for its reconfigurable zone and 4 BRAMs. These 4 BRAMs

are the minimum required for an AES PU to operate in the

herein proposed design.

VI. CONCLUSIONS

In this paper, a microcoded and customizable cryptographic

processor prototype is presented, capable of efficiently com-

puting the AES and EC algorithms, as well as the generation

of secrets through a RNG. The adopted approach relies on

efficient and compact EC and AES processing units that share

the same control from a central microinstruction memory,

allowing simultaneous computing of AES and EC routines.

With this processor, customization can be performed by adding

processing units according to the processing needs. Additional

configuration can be achieved in runtime through the dynamic

reconfiguration capabilities of the FPGA. These characteris-

tics make this processor highly adaptable and flexible. The

reconfiguration time for a single PU is smaller than an EC

multiplication, resulting in negligible impact in the system

performance if several reconfigurations need to be performed.

The proposed processing units, that provide the computing

power of the processor, have shown to be very compact

and suitable for embedded systems, supporting AES and EC

with configurations fitting reconfiguration zones of 1092 slices

each, and throughputs up to 1536 Op/s for EC and 16.8 Mbit/s

for AES. Another advantage of the proposed processor is the

inclusion of a compact true RNG in the architecture. This true

RNG allows for the internal generation of secrets (such as

private keys), thus enhancing the system security.
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